3.8.26 \(\int \frac {(A+B x) (a^2+2 a b x+b^2 x^2)^{3/2}}{x^{9/2}} \, dx\)

Optimal. Leaf size=214 \[ -\frac {2 b^2 \sqrt {a^2+2 a b x+b^2 x^2} (3 a B+A b)}{\sqrt {x} (a+b x)}-\frac {2 a^2 \sqrt {a^2+2 a b x+b^2 x^2} (a B+3 A b)}{5 x^{5/2} (a+b x)}-\frac {2 a b \sqrt {a^2+2 a b x+b^2 x^2} (a B+A b)}{x^{3/2} (a+b x)}+\frac {2 b^3 B \sqrt {x} \sqrt {a^2+2 a b x+b^2 x^2}}{a+b x}-\frac {2 a^3 A \sqrt {a^2+2 a b x+b^2 x^2}}{7 x^{7/2} (a+b x)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {770, 76} \begin {gather*} -\frac {2 a^2 \sqrt {a^2+2 a b x+b^2 x^2} (a B+3 A b)}{5 x^{5/2} (a+b x)}-\frac {2 a b \sqrt {a^2+2 a b x+b^2 x^2} (a B+A b)}{x^{3/2} (a+b x)}-\frac {2 b^2 \sqrt {a^2+2 a b x+b^2 x^2} (3 a B+A b)}{\sqrt {x} (a+b x)}-\frac {2 a^3 A \sqrt {a^2+2 a b x+b^2 x^2}}{7 x^{7/2} (a+b x)}+\frac {2 b^3 B \sqrt {x} \sqrt {a^2+2 a b x+b^2 x^2}}{a+b x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))/x^(9/2),x]

[Out]

(-2*a^3*A*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*x^(7/2)*(a + b*x)) - (2*a^2*(3*A*b + a*B)*Sqrt[a^2 + 2*a*b*x + b^2
*x^2])/(5*x^(5/2)*(a + b*x)) - (2*a*b*(A*b + a*B)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(x^(3/2)*(a + b*x)) - (2*b^2*
(A*b + 3*a*B)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(Sqrt[x]*(a + b*x)) + (2*b^3*B*Sqrt[x]*Sqrt[a^2 + 2*a*b*x + b^2*x
^2])/(a + b*x)

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && (NeQ[n, -1] || EqQ[p, 1]) && N
eQ[b*e + a*f, 0] && ( !IntegerQ[n] || LtQ[9*p + 5*n, 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0] && Rational
Q[a, b, d, e, f])) && (NeQ[n + p + 3, 0] || EqQ[p, 1])

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {(A+B x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{x^{9/2}} \, dx &=\frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {\left (a b+b^2 x\right )^3 (A+B x)}{x^{9/2}} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \left (\frac {a^3 A b^3}{x^{9/2}}+\frac {a^2 b^3 (3 A b+a B)}{x^{7/2}}+\frac {3 a b^4 (A b+a B)}{x^{5/2}}+\frac {b^5 (A b+3 a B)}{x^{3/2}}+\frac {b^6 B}{\sqrt {x}}\right ) \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=-\frac {2 a^3 A \sqrt {a^2+2 a b x+b^2 x^2}}{7 x^{7/2} (a+b x)}-\frac {2 a^2 (3 A b+a B) \sqrt {a^2+2 a b x+b^2 x^2}}{5 x^{5/2} (a+b x)}-\frac {2 a b (A b+a B) \sqrt {a^2+2 a b x+b^2 x^2}}{x^{3/2} (a+b x)}-\frac {2 b^2 (A b+3 a B) \sqrt {a^2+2 a b x+b^2 x^2}}{\sqrt {x} (a+b x)}+\frac {2 b^3 B \sqrt {x} \sqrt {a^2+2 a b x+b^2 x^2}}{a+b x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 84, normalized size = 0.39 \begin {gather*} -\frac {2 \sqrt {(a+b x)^2} \left (a^3 (5 A+7 B x)+7 a^2 b x (3 A+5 B x)+35 a b^2 x^2 (A+3 B x)+35 b^3 x^3 (A-B x)\right )}{35 x^{7/2} (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))/x^(9/2),x]

[Out]

(-2*Sqrt[(a + b*x)^2]*(35*b^3*x^3*(A - B*x) + 35*a*b^2*x^2*(A + 3*B*x) + 7*a^2*b*x*(3*A + 5*B*x) + a^3*(5*A +
7*B*x)))/(35*x^(7/2)*(a + b*x))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 16.92, size = 97, normalized size = 0.45 \begin {gather*} \frac {2 \sqrt {(a+b x)^2} \left (-5 a^3 A-7 a^3 B x-21 a^2 A b x-35 a^2 b B x^2-35 a A b^2 x^2-105 a b^2 B x^3-35 A b^3 x^3+35 b^3 B x^4\right )}{35 x^{7/2} (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((A + B*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))/x^(9/2),x]

[Out]

(2*Sqrt[(a + b*x)^2]*(-5*a^3*A - 21*a^2*A*b*x - 7*a^3*B*x - 35*a*A*b^2*x^2 - 35*a^2*b*B*x^2 - 35*A*b^3*x^3 - 1
05*a*b^2*B*x^3 + 35*b^3*B*x^4))/(35*x^(7/2)*(a + b*x))

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 73, normalized size = 0.34 \begin {gather*} \frac {2 \, {\left (35 \, B b^{3} x^{4} - 5 \, A a^{3} - 35 \, {\left (3 \, B a b^{2} + A b^{3}\right )} x^{3} - 35 \, {\left (B a^{2} b + A a b^{2}\right )} x^{2} - 7 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} x\right )}}{35 \, x^{\frac {7}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/x^(9/2),x, algorithm="fricas")

[Out]

2/35*(35*B*b^3*x^4 - 5*A*a^3 - 35*(3*B*a*b^2 + A*b^3)*x^3 - 35*(B*a^2*b + A*a*b^2)*x^2 - 7*(B*a^3 + 3*A*a^2*b)
*x)/x^(7/2)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 124, normalized size = 0.58 \begin {gather*} 2 \, B b^{3} \sqrt {x} \mathrm {sgn}\left (b x + a\right ) - \frac {2 \, {\left (105 \, B a b^{2} x^{3} \mathrm {sgn}\left (b x + a\right ) + 35 \, A b^{3} x^{3} \mathrm {sgn}\left (b x + a\right ) + 35 \, B a^{2} b x^{2} \mathrm {sgn}\left (b x + a\right ) + 35 \, A a b^{2} x^{2} \mathrm {sgn}\left (b x + a\right ) + 7 \, B a^{3} x \mathrm {sgn}\left (b x + a\right ) + 21 \, A a^{2} b x \mathrm {sgn}\left (b x + a\right ) + 5 \, A a^{3} \mathrm {sgn}\left (b x + a\right )\right )}}{35 \, x^{\frac {7}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/x^(9/2),x, algorithm="giac")

[Out]

2*B*b^3*sqrt(x)*sgn(b*x + a) - 2/35*(105*B*a*b^2*x^3*sgn(b*x + a) + 35*A*b^3*x^3*sgn(b*x + a) + 35*B*a^2*b*x^2
*sgn(b*x + a) + 35*A*a*b^2*x^2*sgn(b*x + a) + 7*B*a^3*x*sgn(b*x + a) + 21*A*a^2*b*x*sgn(b*x + a) + 5*A*a^3*sgn
(b*x + a))/x^(7/2)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 92, normalized size = 0.43 \begin {gather*} -\frac {2 \left (-35 B \,b^{3} x^{4}+35 A \,b^{3} x^{3}+105 B a \,b^{2} x^{3}+35 A a \,b^{2} x^{2}+35 B \,a^{2} b \,x^{2}+21 A \,a^{2} b x +7 B \,a^{3} x +5 A \,a^{3}\right ) \left (\left (b x +a \right )^{2}\right )^{\frac {3}{2}}}{35 \left (b x +a \right )^{3} x^{\frac {7}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/x^(9/2),x)

[Out]

-2/35*(-35*B*b^3*x^4+35*A*b^3*x^3+105*B*a*b^2*x^3+35*A*a*b^2*x^2+35*B*a^2*b*x^2+21*A*a^2*b*x+7*B*a^3*x+5*A*a^3
)*((b*x+a)^2)^(3/2)/x^(7/2)/(b*x+a)^3

________________________________________________________________________________________

maxima [A]  time = 0.60, size = 134, normalized size = 0.63 \begin {gather*} \frac {2}{15} \, B {\left (\frac {15 \, {\left (b^{3} x^{2} - a b^{2} x\right )}}{x^{\frac {3}{2}}} - \frac {10 \, {\left (3 \, a b^{2} x^{2} + a^{2} b x\right )}}{x^{\frac {5}{2}}} - \frac {5 \, a^{2} b x^{2} + 3 \, a^{3} x}{x^{\frac {7}{2}}}\right )} - \frac {2}{105} \, A {\left (\frac {35 \, {\left (3 \, b^{3} x^{2} + a b^{2} x\right )}}{x^{\frac {5}{2}}} + \frac {14 \, {\left (5 \, a b^{2} x^{2} + 3 \, a^{2} b x\right )}}{x^{\frac {7}{2}}} + \frac {3 \, {\left (7 \, a^{2} b x^{2} + 5 \, a^{3} x\right )}}{x^{\frac {9}{2}}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/x^(9/2),x, algorithm="maxima")

[Out]

2/15*B*(15*(b^3*x^2 - a*b^2*x)/x^(3/2) - 10*(3*a*b^2*x^2 + a^2*b*x)/x^(5/2) - (5*a^2*b*x^2 + 3*a^3*x)/x^(7/2))
 - 2/105*A*(35*(3*b^3*x^2 + a*b^2*x)/x^(5/2) + 14*(5*a*b^2*x^2 + 3*a^2*b*x)/x^(7/2) + 3*(7*a^2*b*x^2 + 5*a^3*x
)/x^(9/2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+B\,x\right )\,{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{3/2}}{x^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x)*(a^2 + b^2*x^2 + 2*a*b*x)^(3/2))/x^(9/2),x)

[Out]

int(((A + B*x)*(a^2 + b^2*x^2 + 2*a*b*x)^(3/2))/x^(9/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B x\right ) \left (\left (a + b x\right )^{2}\right )^{\frac {3}{2}}}{x^{\frac {9}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(b**2*x**2+2*a*b*x+a**2)**(3/2)/x**(9/2),x)

[Out]

Integral((A + B*x)*((a + b*x)**2)**(3/2)/x**(9/2), x)

________________________________________________________________________________________